Curso MOOC EDX Liderazgo y Comunicación en Equipos híbridos y remotos

#MOOC #remotework #liderazgo #teamwork #remoto #trabajoenequipo

En este programa de capacitación profesional incorporamos los siguientes cursos:

1) Trabajando en equipo en entornos presenciales, remotos e híbridos: Enlace a inscripción (disponible desde diciembre 2022-)
2) Liderazgo de equipos remotos: Enlace a inscripción (disponible desde noviembre 2022 -inicio curso marzo 2023-)
3) Habilidades de Comunicación interpersonal adaptada a equipos remotos: Enlace a inscripción (disponible desde noviembre 2022 -inicio curso mayo 2023-)

(versiones en inglés a partir de noviembre 2023)

Las competencias transversales (soft skills) son esenciales en prácticamente todos los puestos de trabajo actuales y complementan a las competencias técnicas (hard skills) para construir un perfil exitoso de las personas que abanderan/representan el talento de una organización.
Para este programa hemos seleccionado un conjunto de tres competencias transversales cruciales (Trabajar en equipo, Influir positivamente en el comportamiento de las personas del equipo y comunicarse de manera efectiva con ellas).
Este programa proporciona habilidades para trabajar en equipo en un entorno remoto, algo que ya es habitual en todas las instituciones y empresas y que cada vez lo será más.

Se sabe mucho sobre cómo usar estas competencias en entornos presenciales (y edX tiene ya moocs de esto). Sin embargo , existe un hueco en formación sobre cómo adaptar los comportamientos esenciales en cada competencia cuando el equipo trabaja remotamente.

Videos de presentación del programa: https://www.youtube.com/playlist?list=PL6kQim6ljTJvBTOz50HAlhxYRELxuK6L0

Visitas: 118

La autocensura del investigador: cómo el sistema de sexenios convierte a investigadores apasionados en burócratas estratégicos

Ya he completado las tareas. Tanto la “obligatoria” de presentar los papeles en ANECA, como la voluntaria de hacer una reflexión personal (Rellenar sexenios de investigación: mi propuesta para transformarlo | Blog de Juan A. Marin-Garcia).

Voy a compartir mi reflexión personal del proceso, si me ha servido para algo y las sensaciones que me han ido provocando las diferentes decisiones que he ido tomando.

Empecemos por algunos hechos:

  • Tengo mucha producción. Me refiero a que tengo más de 7 posibles aportaciones (5 principales más dos sustitutorias). Eso es una ventaja porque me permite elegir. Es, al mismo tiempo, un fastidio porque me obliga a perder el tiempo tomando las decisiones sobre qué descartar. Decisiones que no son sencillas porque, al menos, hay 13 o 14 artículos con claro potencial. Luego hay varios artículos más que claramente no iban a ser candidatos -porque son protocolos y para mí confluyen con una de las aportaciones principales, o son de áreas ajenas al management o siempre fueron “artículos menores” que me interesaba escribir para dar cauce a una idea o para forzarme a aprender algo con rigor-.
  •  Algunas de las circunstancias reductoras de puntuación afectan directamente a varios de mis trabajos.

Y pasemos ahora a mis inferencias, opiniones y percepciones. Para mí, estos son los “takeaways” que me llevo del proceso de reflexión, siendo consciente de que son solo el modo en que veo el asunto y, sin duda, están sesgados.

Algunos de los que yo considero mis mejores trabajos por lo que ha supuesto escribirlos, la contribución que yo creo que tienen en la academia y en la sociedad y que, además, han sido de los más citados (no me creo que las citas indiquen nada, pero supongo que para mucha gente este es un indicador imprescindible), no los puedo poner como meritos porque sería un suicido (directamente me van a poner un cero porque cumplen alguno o varios de los criterios de minoración de puntuaciones). Por ejemplo:

  • Marin-Garcia, J. A., Vidal-Carreras, P. I., & Garcia-Sabater, J. J. (2021). The Role of Value Stream Mapping in Healthcare Services: A Scoping Review. International Journal of Environmental Research and Public Health, 18(3), 951. https://doi.org/10.3390/ijerph18030951

No me apetece jugármela a tener que defender mis méritos en una reclamación, de modo que voy a ser cauto y conservador y elegir como méritos los que creo que van a gustar al panel, no los que yo creo que realmente son mis mejores trabajos. Me he permitido la licencia de ser “irreductible” en una de las sustitutorias, donde he puesto una aportación de investigación sobre aprendizaje. Porque desde el primer sexenio me impuse el compromiso de poner siempre al menos una investigación docente en mis aportaciones:

  • Aznar-Mas, L. E., Atarés Huerta, L., & Marin-Garcia, J. A. (2021). Students have their say: Factors involved in students’ perception on their engineering degree. European Journal of Engineering Education, 46(6), 1007–1025. https://doi.org/10.1080/03043797.2021.1977244).

De las 5 aportaciones principales, yo solo habría mantenido una o dos de ellas (y también habría puesto otra en lugar de una de las sustitutorias). ¿Por qué no lo he hecho? Porque me “he cagado”. Tengo la seguridad de que no lo iban a entender en la comisión y que peligraba el sexenio… que no pasa nada, ya tengo 3 sexenios, y un sexenio son solo 140 euros al mes de extra en la nómina. Es triste, pero me he vendido por 140 euros de mierda (que, además, no me hacen falta para llegar a final de mes, esa enorme suerte tengo).

¿Cuales hubiera puesto yo de no haberme “cagado”? Sin duda, habría puesto al menos dos contribuciones sobre las cosas que hicimos durante la época de COVID, en la que nos volcamos  a dedicar horas y todos nuestros conocimientos para apoyar a los hospitales. A los que nos quisieron como colaboradores, y hasta que nos obligaron a dejar de colaborar con ellos desde las altas esferas (bueno, nunca les hicimos caso y seguimos desde la clandestinidad 😉 ). Gracias a ello, recibimos el premio “Luis Merelo y Más” del Colegio de Ingenieros Industriales de la Comunidad Valenciana. Muchas de las cosas que aprendimos entonces también las pudimos aplicar durante la catástrofe de la Dana del 2024. Como representativo de esta línea hubiera elegido estos dos trabajos:

  • Marin-Garcia, J. A., Garcia-Sabater, J. J. P., Ruiz, A., Maheut, J., & Garcia-Sabater, J. J. P. (2020). Operations Management at the service of health care management: Example of a proposal for action research to plan and schedule health resources in scenarios derived from the COVID-19 outbreak. Journal of Industrial Engineering and Management, 13(2), 213. https://doi.org/10.3926/jiem.3190
  • Redondo, E., Nicoletta, V., Bélanger, V., Garcia-Sabater, J. P., Landa, P., Maheut, J., Marin-Garcia, J. A., & Ruiz, A. (2023). A simulation model for predicting hospital occupancy for Covid-19 using archetype analysis. Healthcare Analytics, 3, 100197. https://doi.org/10.1016/j.health.2023.100197

Además, habría puesto mis artículos sobre guías para la difusión de la ciencia. Sinceramente creo que son de las cosas más útiles e interesantes que he hecho (aunque sea yo el único que piense eso):

  • Marin-Garcia, J. A. (2021). Three-stage publishing to support evidence-based management practice. WPOM-Working Papers on Operations Management, 12(2), 56–95. https://doi.org/10.4995/wpom.11755
  • Marin-Garcia, J. A., & Alfalla-Luque, R. (2021). Teaching experiences based on action research: A guide to publishing in scientific journals. WPOM-Working Papers on Operations Management, 12(1), 42–50. https://doi.org/10.4995/wpom.7243
  • Marin-Garcia, J. A., Garcia-Sabater, J. P., & Maheut, J. (2022). Case report papers guidelines: Recommendations for the reporting of case studies or action research in Business Management. WPOM-Working Papers on Operations Management, 13(2), 108–137. https://doi.org/10.4995/wpom.16244
Sobre investigación docente habría elegido este, porque realmente es el trabajo que más transforma el aprendizaje de 60 futuros directivos-as cada año:
  • Marin-Garcia, J. A., Garcia-Sabater, J. J., Garcia-Sabater, J. P., & Maheut, J. (2020). Protocol: Triple Diamond method for problem solving and design thinking. Rubric validation. WPOM-Working Papers on Operations Management, 11(2), 49–68. https://doi.org/10.4995/wpom.v11i2.14776

También habría incluido alguna aportación representativa de mi línea de investigación en Gestión de Recursos Humanos. Mi solicitud ha quedado demasiado sesgada hacia la Dirección de Operaciones. Por ejemplo habría incluido:

  • Marin-Garcia, J. A., Bonavia, T., & Losilla, J. M. (2020). Changes in the Association between European Workers’ Employment Conditions and Employee Well-being in 2005, 2010 and 2015. Int J Environ Res Public Health, 17(3), 1048. https://doi.org/10.3390/ijerph17031048

Resumiendo, no me he atrevido a dejarme llevar por la interpretación que yo hago de cuál creo que es el espíritu de la norma. He preferido autocensurarme y hacer una solicitud estándar, del montón, doblegando mi espíritu crítico, mi creatividad, y mi compromiso con una pasión para encajar en el estrecho corsé de lo que creo (sin ninguna certeza) que se puntúa en mi campo científico. Esto me deja una profunda desazón y vergüenza. No ha sido una experiencia agradable el tener que pasar por esto. Y me deja preocupado. Si algo que no necesito es capaz de pervertir mi comportamiento, y hacer que me venda y me aleje de mis creencias solo por conseguir una métrica, estamos realmente “jodidos” en la academia.

Si no tuviera la seguridad de que me van a  sobrar aportaciones y que, por lo tanto, puedo dedicarme a investigar lo que creo, en conciencia, que es lo que debo investigar, habría tenido una enorme presión por dejar de hacer las cosas en las que creo, para dedicar mi escaso tiempo solo a las cosas que me van a puntuar. Por suerte, yo abordo todo lo que hago como un proyecto de publicación de artículos, lo que me genera un volumen alto de opciones y permite que, cosas que sé desde el principio que jamás serán puntuables, puedan tener su oportunidad de existir y ser encontradas por potenciales lectores.

Mientras escribo esta entrada, me ha llegado al mi bandeja de entrada este anuncio de publicación de artículo:

  • Baruch, Y., & Budhwar, P. (n.d.). Impact and management studies: Why making practical impact is not a core academic expectation. European Management Review. https://doi.org/10.1111/emre.70051
Ha sido providencial porque aborda muchas de las cosas que yo he estado pensando estas dos últimas semanas. Os dejo algunos apuntes a modo de trailer:
 
El artículo alerta sobre la creciente presión gubernamental para que la investigación demuestre un impacto práctico inmediato, lo que está erosionando la función fundamental de las universidades. Esta exigencia representa una ruptura con el modelo de universidad basado en la autonomía para la búsqueda libre del conocimiento.

El problema es tanto conceptual como metodológico. Por un lado, la naturaleza misma del trabajo académico en ciencias sociales genera impacto de forma indirecta y diferida: los académicos transforman la sociedad a través de sus estudiantes y del conocimiento que estos llevan al mundo profesional, un proceso cuyo valor se manifiesta a largo plazo. Por otro lado, la medición del impacto carece de criterios válidos y fiables, siendo prácticamente imposible establecer una relación causal directa entre una investigación específica y cambios sociales u organizacionales concretos.

Los autores no rechazan el valor del impacto práctico, sino su imposición como criterio central de evaluación académica. La creación de conocimiento, el rigor intelectual y la libertad académica deben constituir el “imperativo” de la universidad, mientras que la aplicación práctica inmediata puede ser un resultado deseable pero no una obligación. Invertir esta prioridad, convirtiendo el impacto como motor principal de la actividad académica, supone desviar recursos intelectuales de la generación de conocimiento original hacia la demostración de utilidad inmediata, comprometiendo así la esencia misma de la institución universitaria.

 
Universidad de Cádiz: Sexenios 2025 – Área de Biblioteca

Visitas: 134

What is learning in the age of generative AI? From panic to evidence

I will be presenting this research at the upcoming XVII International Workshop ACEDEDOT – OMTECH 2026, taking place in Almería, Spain, from March 12-14, 2026:

This communication presents an autoethnographic reflection. Building on four fundamental premises about the function of Spanish public universities and the established mechanisms of human learning, the author documents his personal journey from initial uncertainty to the design of a systematic work plan. The study focuses on understanding the current scientific consensus on how learning is consolidated in the brain and exploring the possibilities of generative AI to enhance this process in the university context. Drawing on the work of Héctor Ruiz Martín, a work plan is designed that combines recommendations from educational neuroscience with the Feynman method and the EPLEDRE model, including spaced reading, creation of sketchnote-type graphic schemes from memory, and public communication of the knowledge constructed. The communication shares the first graphic schemes developed and reflects on the author’s dual position as university teacher and administrator, facing both his own methodological uncertainties and institutional expectations for strategic guidance. It questions the “collective panic” surrounding the emergence of generative AI in universities and the pressure to make quick decisions without sufficient reflection. It proposes replacing reactive urgency with a deliberate process of calm, evidence-based reflection and pilot experimentation, recognizing that in contexts of accelerated change, it is preferable to miss some “trains” rather than make biased decisions under collective amygdala hijacking

Keywords: Learning; autoethnography; generative artificial intelligence; university learning; educational neuroscience; teaching transformation

Learning; autoethnography; generative artificial intelligence; university learning; educational neuroscience; teaching transformation

Visitas: 25

Rellenar sexenios de investigación: mi propuesta para transformarlo

Este año me toca presentar la solicitud para el sexenio de investigación. La experiencia de las tres veces anteriores fue frustrante, no por el resultado (conseguí el informe favorable directo en las tres ocasiones), sino por la sensación de pérdida de tiempo en una actividad que no añadía absolutamente nada de valor (ni a mí ni a la sociedad).

Ahora voy a intentar que sea diferente; no sé si lo conseguiré, porque los sistemas pensados para “certificar” la calidad, y no para “promover” la calidad, no ayudan demasiado y tienen una pasmosa capacidad para convertir las tareas en “No Valor Añadido, No Evitable”.

¿Qué es lo que me planteo?  Aprovechar que voy a hacer una mirada retrospectiva a mis publicaciones y reflexionar sobre el impacto social, la contribución al progreso del conocimiento y el impacto científico para decidir qué cosas tengo que cambiar en el futuro.

El principal problema que anticipo es que los indicadores que tendré disponibles no me darán ninguna información relevante para tomar decisiones.

Por ejemplo, aunque se me hubiera ocurrido etiquetar con la TAG #sexeniosjamgupv2025 todas las entradas que he hecho en las diferentes redes sociales, ¿para qué me sirve ver el número de “likes” en linkedin, Facebook, X o Bluesky? ¿Realmente me dice algo sobre cómo mejorar el tipo de investigación que hago?

Supongo que podría decir algo parecido de las citas, ¿que no me citen (o que me citen) significa que realmente no (si) se han leído mi trabajo?

Y si no me sirven los indicadores disponibles, ¿cómo puedo tomar decisiones basadas en evidencia y no usar autoengaños para justificarme ante mí mismo?

Pues este tipo de cosas son las que quiero darles algunas vueltas las próximas semanas. Si no aclaro nada, esta edición de la solicitud de sexenios habrá sido, una vez más, una pérdida de tiempo. Si saco alguna conclusión, tendré que agradecer a ANECA por obligarme a invertir mi tiempo en preparar una solicitud que ha desencadenado un proceso beneficioso.

https://guiasbib.upo.es/convocatoria_sexenios/portada

Visitas: 81

Los LLMs no recuerdan (las personas tampoco): estrategias para trabajar con memoria limitada

Mis “take away”  de la lectura de esta entrada de blog de Ethan Mollick:

  1. Los LLM son aduladores y lisonjeros por naturaleza, tienes que pedirles que sean críticos o “destructivos” para intentar que hagan análisis más ecuánimes. Pero nunca tendrás la seguridad de que te detecten todos los errores o te manifiesten abiertamente todas las cosas negativas, sobre todo si están analizando una propuesta que es un bodrio sideral
  2. Los LLM no tienen memoria a largo plazo. Cada plataforma tiene estrategias distintas para lidiar con el problema de superar la ventana de contexto. ChatGPT usa un FIFO (que, si estás conversando de manera iterativa profundizando sobre el mismo concepto, te da buen resultado porque realmente lo que importa es lo último en lo que estás trabajando). Claude hace “borrón y cuenta nueva”, pero antes, cuando detecta que se queda sin contexto, compacta la conversación (y la documentación subida), la guarda, inicia una nueva instancia y coge como punto de partida el resumen y, a partir de ahí, empieza a trabajar de nuevo. La forma en que trabaja CLAUDE es exactamente el modo que yo trabajo cuando tengo tareas con tiempo fragmentado (Que no puedo completar en una sesión de trabajo), por eso supongo que me gustan más los resultados que me da Claude que los de ChatGPT
  3. Además de lo anterior, el uso de Skills y Agents permite aliviar el problema de la memoria de contexto. Solo se activa lo que necesitas para una tarea y, además, puedes activar “hilos” en paralelo (cada uno con su propia memoria de contexto libre para ese hilo) que se comunican entre sí (los resultados de unos son las entradas para otros). Es una forma modular y analítica de resolver tareas (algo que yo también hago de manera natural: divido en subtareas que me caben en tiempo fragmentado y guardo la “preparación” intermedia para alimentar otras tareas)

 

He tenido que rebuscar un poco para clarificar los conceptos de skill y agent, este es mi resumen:

  • Skill (instrucciones/prompts y herramientas para realizar una tarea concreta)
    • Instrucción: descripción de cuándo usar el skill (ej. “Usa esto cuando la usuaria pregunte por X”)
    • Herramienta: un trozo de código, una API o una función (ej. buscar en Google, calcular una hipoteca)
  • Agent (deciden (razonar, planificar) qué herramienta usar, en qué orden las usan y qué hacer si algo sale mal). Puedes activar varios agentes en paralelo
    • Sigue un ciclo o un proceso: Analiza la meta: “¿Qué me han pedido?”; Planifica: “¿Qué pasos necesito y qué Skills debo usar?”; Ejecuta: Usa una Skill; Observa: “¿El resultado es lo que esperaba?”; Itera: Repite hasta terminar
Imagen generada con Gemini nano banana
Imagen generada con ChatGPT5.2

Visitas: 9

Reflexion sobre tecnologia

He leído varios blogs estos días donde me ha parecido que sus autoras-es se quejaban de que los “copilotos IA” están mal diseñados y que son los culpables de todos los malos usos que se les están dando. Igual no es lo que querían decir, pero es el mensaje que me ha calado.

Esto me ha llevado a dos reflexiones:

  1. Mejor llamarle herramienta porque no es un copiloto, por mucho que sus desarrolladores quieran denominarlo así porque vende mejor o más
  2. El problema no es del “copiloto”. El problema es del piloto. Si el piloto decide estrellar el barco contra el iceberg, no es problema del barco ni del iceberg. Las tecnologías no son «neutras», eso es cierto, pero el uso (o no uso) que decide darles cada persona es lo que determina el impacto.

Visitas: 3

Hechos, inferencias, opiniones y percepciones (no es todo lo mismo)

Como diría Alejandro Sanz, no es lo mismo. Por mucho que en el día a día, en las conversaciones o en las decisiones, eso que llamamos “la gente” (que no deja de ser un eufemismo para evitar reconocer que “la gente”, como hacienda, somos todos) parece querer convencernos, y convencerse, de que sus opiniones son inferencias basadas en hechos, cuando son solo opiniones.

Como estas tres palabras representan claramente cosas distintas, voy a detallar en esta entrada qué son y dar algunos ejemplos de cada una, para intentar, en la medida de lo posible, que en el futuro llamemos a las cosas por su nombre, evitando considerarlas como sinónimos.

Hechos

Un hecho es una afirmación que describe algo que ha ocurrido o está ocurriendo. Los hechos pueden comprobarse mediante observación directa, medición, documentación o evidencia empírica, de modo que son verificables de manera objetiva e independiente de las opiniones (o de la persona que observa el hecho). De modo que diferentes observadores pueden llegar al mismo resultado al porque describen “qué es” o “qué pasó”, y no “qué debería ser” o “qué les gustaría que fuera”.

Ejemplos de hechos: “la temperatura es de 25°C”, “María tiene 30 años”, “el experimento produjo 50ml de solución”, “la empresa tuvo pérdidas de 1 millón de euros en 2024”.

Inferencias

Las inferencias son conclusiones lógicas que se derivan de hechos (evidencias, datos o premisas disponibles) mediante un proceso de razonamiento. Las inferencias pueden evaluarse y resultar correctas o incorrectas. Su validez depende de la calidad del razonamiento y de la (veracidad) de las evidencias o premisas usadas en el razonamiento.

Por ejemplo: “si llueve, las calles estarán mojadas” o “como las ventas disminuyeron un 30% este trimestre, probablemente necesitamos revisar nuestra estrategia de marketing”.

Debemos tener en cuenta que los hechos pueden interpretarse de diferentes maneras. Es decir, podemos extraer diferentes inferencias. El hecho “Las ventas bajaron un 30%” es verificable, pero las interpretaciones sobre por qué bajaron (“fue por la mala estrategia de marketing”) ya son una inferencia que debe contrastarse adicionalmente (no basta que el hecho sea verificado y cierto para que la inferencia lo sea).

Opiniones

Las opiniones son juicios de valor o puntos de vista personales que reflejan preferencias, creencias, sentimientos o valoraciones subjetivas. Las opiniones están influidas por experiencias personales, valores, cultura y emociones. Pueden ser válidas para quien las expresa, pero no pueden demostrarse como verdaderas o falsas de manera objetiva.

Por ejemplo: “esta clase es aburrida”, “el lean es mejor que la Gestión de Operaciones tradicional”, o “deberíamos invertir más en formación de empleados”. 

Percepciones

Interpretaciones subjetivas e inmediatas de la realidad, filtradas por nuestros sentidos, experiencias y marcos mentales. A diferencia de los hechos, dos personas pueden tener percepciones distintas del mismo evento. A diferencia de las opiniones, no siempre son juicios de valor conscientes. A diferencia de las inferencias, no requieren razonamiento deliberado.

La clave está en reconocer que “yo percibo X” no significa que X sea un hecho, pero tampoco invalida la experiencia de quien percibe.

Visitas: 7

¿Qué nos hace insustituibles? Investigando el valor del profesorado universitario cuando la IA lo sabe todo

 (Proyecto de investigación del Vicerrectorado de Planificación, Estudios, Calidad y Acreditación de la Universitat Politècnica de València. Dirección de Area de Transformación Docente e Instituto de Ciencias de la Educación)

Mientras algunas personas debaten si prohibir o no “ChatGPT” en nuestras aulas, nuestros estudiantes ya lo usan. Porque muchas de las cosas que enseñamos, la IA ya las responde mejor y más rápido. Si no identificamos qué nos hace verdaderamente valiosos como profesorado universitario, corremos el riesgo de volvernos irrelevantes.

Planteo hacer una serie de entradas donde te contaré:

Entrada 1: por qué decidimos investigar esto y las preguntas que nos quitan el sueño

Entrada 2: qué dicen los estudiantes sobre lo que nos hace insustituibles (siete cosas que valoran y tres alertas rojas)

Entrada 3: qué propone el profesorado y hacia dónde vamos con este proyecto

Este proyecto no va de tecnofobia ni de tecnoeuforia. Va de preguntarnos qué deberíamos seguir haciendo, qué transformar radicalmente, y qué quizá dejar de hacer.

¿que emociones genera en ti cuando oyes “Inteligecia Artificial Generativa”? (50 profesoras-es, noviembre 2025)

Visitas: 19

Vocabulario esencial de Inteligencia Artificial Generativa

En unas jornadas en noviembre 2025 se me ocurrió preguntar si conocían el significado de algunos términos que, para mí, son básicos sobre IA generativa (si no sabes lo que significan dudo mucho que puedas entender cómo funciona y mucho menos pilotarla adecuadamente)

Asistieron unas 50 personas, todas ellas profesoras de universidad, en diferentes titulaciones y departamentos y con diferente trayectoria académica – desde jóvenes recién entradas a catedráticas -, y con cierta sensibilización y práctica como usuarias de Inteligencia Artificial Generativa (no creo que se pudieran considerar “novatas” o que acabaran de descubrir qué es esto de la IAgen).

Y estos son los resultados:

  • User prompt

    • (Lo que tú me dices)
    • Es como cuando tú haces una pregunta o pides algo. Por ejemplo, “cuéntame un cuento” o “ayúdame con mi tarea”. Es lo que TÚ escribes para hablar la IAgen
  • System prompt

    • (Las reglas secretas que tengo)
    • Es como las reglas que los programadores dieron a la IAgen antes de que pudiéramos hablar. Por ejemplo, “sé amable”, “ayuda siempre”, “no digas groserías”. Tú no puedes ver estas reglas, pero la IAgen siempre las sigue
    • En algunos casos (proyectos, “chat builder” o uso del LLM por API con un script ) puedes “controlar” el System prompt (añadirlo al programado o, en algunos modelos, sustituir el programado)
  • Temperature

    • (Qué tan creativo soy)
    • Imagínate que la IAgen tenga un botón de creatividad. Si está en “frío”, siempre da respuestas muy parecidas y serias. Si está en “caliente”, es más divertida, creativa, impredecible, pero a veces digo cosas raras. Es como elegir entre ser muy formal o muy juguetón
  • Context

    • (Lo que recordamos de nuestra conversación)
    • Es como nuestra memoria de la conversación. Si le dijiste a la IAgen que te gusta el helado de chocolate, lo recuerda para seguir hablando contigo sobre eso. Es todo lo que hemos dicho antes en nuestra charla (hasta el límite que los programadores hayan establecido)
    • La nueva información sustituye a la más antigua cuando sobrepasa la capacidad y se desborda (olvidando primero lo más antiguo)
    • Algunas plataformas (como POE) te permiten indicar a ti la amplitud del contexto
  • RAG

    • (Buscar información extra)
    • Es como cuando no sé algo y voy a buscar en una biblioteca especial para darte mejor información. En lugar de solo usar lo que ya sé, voy a buscar datos frescos para ayudarte mejor (uso los Chunk Embeedings para esto)
  • Chunk Embeedings

    • (Pedacitos de información organizados)
    • Imagínate que tienes muchos libros y cortas cada página por cada párrafo. Luego, cada párrafo lo conviertes en un vector (una lista de números). Así la IAgen puede encontrar el párrafo que necesito cuando preguntas algo. Por menos distancia con la pregunta
  • Embeddings

    • Imagínate que quieres describir a tu mejor amigo. Podrías decir:
      • Lo alto es (del 1 al 10)
      • Lo divertido es (del 1 al 10)
      • Lo bueno es en matemáticas (del 1 al 10)
      • Lo deportista es (del 1 al 10)
    • Entonces, tu amigo sería algo como: [7, 9, 5, 8] – esos son 4 números que lo describen-.
    • Ahora imagínate que en lugar de 4 cosas, quisieras describir TODAS las características posibles de tu amigo: su humor, inteligencia, creatividad, bondad, si le gustan los animales, si es tímido, si le gusta la música… podrían ser 300 o 1000 características diferentes
    • Eso es exactamente lo que hace un embedding con las palabras. Toma una palabra como “gato” y la convierte en una lista súper larga de números (como [0.2, -0.5, 0.8, 0.1, -0.3…]) donde cada número representa una característica de esa palabra.
    • La palabra “perro” tendría números muy parecidos a “gato” porque ambos son animales peludos y mascotas. Pero “avión” tendría números muy diferentes.
    • Vector n-dimensional
      • Es el nombre técnico para esa lista súper larga de números. Si tiene 300 números, decimos que es un “vector de 300 dimensiones”. Es como si cada palabra viviera en un espacio gigante con 300 direcciones diferentes, y el vector representa las coordenadas que nos dicen dónde está exactamente en ese espacio.
    • Por eso las palabras parecidas “viven cerca” en ese espacio invisible y las diferentes “viven lejos”.
  • Distance (cosine)

    • Una forma de medir la distancia donde lo que importa es la dirección (no la distancia “euclídea”). Si los vectores apuntan en la misma dirección tienen menos distancia (aunque uno sea más corto o más lejano)
  • NLP

    • (Entender el lenguaje humano)
    • La capacidad de la IAgen para entender lo que se le dice y responderte en tu idioma. Es como ser un traductor súper inteligente que entiende no solo las palabras, sino también lo que realmente quieres decir.
    • Sentence Transformers vs GPT (Dos tipos diferentes de robots inteligentes)
  • Sentence Transformers

    • Una especie de robots que son súper buenos para entender y comparar frases. Son como bibliotecarios que pueden encontrar el libro que “CREEN” que buscas a partir de una información incompleta que les das. Convierten el texto en números (y siempre los mismos números para el mismo texto) en base a los pesos de su entrenamiento. Convierten frases nuevas en embeddings en tiempo real. Cuando les das una frase que nunca han visto antes, la procesan y crean un vector nuevo específicamente para esa frase completa.
    • Su trabajo es crear representaciones numéricas de frases completas
    • Son especialistas en capturar el significado de oraciones enteras
  • Generative Pretrained Transformers

    • Una especie de robots súper buenos para crear y escribir cosas nuevas. Durante el entrenamiento, ya se calcularon y “congelaron” todos los embeddings de los tokens. Cuando tú escribes algo, tus palabras se convierten en tokens, cada token ya tiene su embedding calculado, Los pesos de todas las conexiones también estaban ya calculados. Solo se comparan los embeddings para seleccionar los que tienen más probabilidad de continuar la secuencia
    • Durante el entrenamiento fue como afinar cada tecla del piano y ajustar cada cuerda. Ahora, cuando “tocas” una secuencia de teclas (escribes), el piano ya sabe qué sonidos hacer porque ya está todo afinado. Lo que ocurre es que a partir de unas instrucciones que le das (system + user prompts) el piano se dedica a componer e interpretar.
  • Attention mechanism

    • Es como cuando lees un cuento y prestas más atención a las partes importantes. Los GPT hacen lo mismo con las palabras: ponen más atención a las palabras que creen que son más importantes de tu pregunta, para darte una “mejor” respuesta.

Visitas: 38

Homonimia y sinonimia, los dos males de la ciencia del management que impide a la IA dar resultado útiles

(contenido creado a finales de 2025, no sé lo bien o mal que envejecerá este post)

Con frecuencia, mis colegas investigadores me preguntan sobre qué plataforma de IA les recomiendo que pueda dar buenas respuestas a preguntas científicas/profesionales. Me ponen por ejemplo que los profesionales de medicina usan cosas como OpenEvidence ; Search – Consensus: AI Search Engine for Research ; Elicit: AI for scientific research

Mi opinión en estos momentos, basada en los experimentos que llevo haciendo desde hace un par de años (experimentos informales, no del todo sistemáticos, y sobre todo centrados en los temas o asuntos que me interesan a mí en mi día a día como investigador, docente y consultor), es que no hay nada en nuestro campo que aporte resultados “decentes” (que sean útiles, ciertos o que no tengan un sesgo tremendo en la respuesta).

Tanto OpenEvidence como Consensus, Elicit y similares solo aciertan (cuando aciertan) con literatura de ciencias de la salud.

Los motivos son claros para mí. Primero el modo que esas comunidades difunden su ciencia:

    • El tipo de artículos e investigaciones que hacen
    • Lo específicos que son al emplear términos y la estricta nomenclatura que usan (nunca emplean el término “dolor de cabeza”, usan, por ejemplo, cefalea tensional, neuralgia o migraña…, y cada uno es diferente de los otros)
    • El consenso en la reutilización de instrumentos de medida que se han demostrado válidos y fiables
    • y la tradición en “medicina basada en evidencia” que tienen (que igual es el origen de todo lo anterior)

Eso les permite que la IA pueda sacar resultados interesantes.

Además, aunque ya más tangencialmente, el conjunto de documentos con el que se ha entrenado el modelo (que claramente está sesgado a esas ciencias, porque entiendo que es donde más negocio pueden hacer los que venden esas plataformas).

Sin embargo, en el caótico mundo de la investigación en Management, donde cada uno pone el nombre que le da la gana a las “cosas” y midiéndolo cada vez de una forma distinta, el resultado es que una misma palabra significa cosas distintas en distintos artículos (homonimia) y, al mismo tiempo, las mismas cosas se nombran con palabras completamente diferentes (sinonimia).

No sé si resolviendo esto resolveríamos completamente el problema, pero habríamos dado un paso de gigantes para poder hacer una extracción sistemática a gran escala del enorme conocimiento que se ha ido generando en el área y que, de momento, está enmarañado.

Visitas: 34

Si quieres que los demas te quieran, empieza por quererte a ti mismo

Vamos a suponer que esta frase de Simon Sinek es cierta (que creo que lo es). Mi duda es si basta que uno (o unos pocos) en la cadena no tenga 💘, para destrozar el trabajo de todos los demás, en cuyo caso, cuando los procesos son largos, complejos y atraviesan diferentes unidades que no se comunican fluido entre sí, tendríamos un sistema muy vulnerable (que me temo que va por ahí la cosa).

Por ejemplo, aplicado a mi organización; si nuestro PDI, PTGA y subcontratas no 💘 UPV, nuestros estudiantes no podrán tener una experiencia memorable de su paso por la UPV. Lo que no sabría deciros es el nivel de 💘 en cada colectivo, ni si están agrupados en procesos, o cada proceso tien un poco de todo y, por lo tanto, la experiencia no sería lo maravillosa que podría ser en ninguno.

Visitas: 10